On the curvature of the real amoeba
نویسندگان
چکیده
For a real smooth algebraic curve A ⊂ (C), the amoeba A ⊂ R is the image of A under the map Log : (x, y) 7→ (log |x|, log |y|). We describe a universal bound for the total curvature of the real amoeba ARA and we prove that this bound is reached if and only if the curve A is a simple Harnack curve in the sense of Mikhalkin.
منابع مشابه
RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملEstimation of Source Location Using Curvature Analysis
A quadratic surface can be fitted to potential-field data within 3×3 windows, which allow us to calculate curvature attributes from its coefficients. Phillips (2007) derived an equation depending on the most negative curvature to obtain the depth and structural index of isolated sources from peak values of special functions. They divided the special functions into two categories: Model-specific...
متن کاملTotally umbilical radical transversal lightlike hypersurfaces of Kähler-Norden manifolds of constant totally real sectional curvatures
In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...
متن کاملApplication of surface-derived attributes in determining boundaries of potential-field sources
This paper describes an edge detection method based on surface-derived attributes. The surface-derived attributes are widely used in the interpretation ofseismic datain two main categories: (1) derivative attributes including the dip angle and the azimuth; (2) derivative attributes including curvature attributes. In general, the magnitude of the normal curvature of a surface (curvature attri...
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کامل